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We show that if b and b' are two boundary conditions (b.c.) for general 
spin systems on Z a such that the difference in the energies of a spin con- 
figuration ~A in A c Za is uniformly bounded, [HA.~(ga) -- Ha,b'(aA)[ ~< 
C < 0% then any infinite-volume Gibbs states p and p' obtained with these 
b.c. have the same measure-zero sets. This implies that the decompositions 
of p and p" into extremal Gibbs states are equivalent (mutually absolutely 
continuous). In particular, if p is extremal, p = p'. Application of this 
observation yields in an easy way (among other things) (a) the uniqueness 
of the Gibbs states for one-dimensional systems with forces that are not 
too long-range; (b) the fact that various b.c. that are natural candidates for 
producing non-translation-invariant Gibbs states cannot lead to such an 
extremal Gibbs state in two dimensions. 

KEY WORDS: Boundary conditions; Gibbs states; spin systems. 

1. I N T R O D U C T I O N  

The outl ine of this paper is as follows. We first recall briefly the definition 
and  some known  properties of Gibbs  states for lattice systems. We then prove 

(by a simple observation) our  main  theorem and  give various applications as 

corollaries. This is followed by some remarks about  " s t ab i l i ty"  criteria for 
extremal Gibbs  states and  a sketch of a p roof  for extending our results to 

more  general systems, e.g., lattice models with hard cores. 

Gibbs States 

We consider the general formalism of Gibbs  states for spin systems with 
a compact  metric space as phase space. We recall here the basic definitions 
and  properties of  Gibbs  states. For  more details, see Refs. 1 and  2. 
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For  each i = (il ,..., ia) ~ 2~ a, we have a copy (f2~, v,) of  a compac t  metric 
space f2o and  a probabi l i ty  measure  Vo on f2o. 

Fo r  A _c 7/a, 

f2a = 1--I f2~ ,  v A = I - - [ v  ~ 

f2 = f ~  is equipped with the a-algebra generated by the cylinder sets. 
For  a e f~, ~A e g2A is the restriction o f  a to f2A. 
The  group 2~ a acts on f~ as 

(T'o)j  = a j _ , ,  a e f~ (1) 

An interact ion qb is a family (qbx) indexed by the finite subsets o f  g d such 
that  ~ x  is a cont inuous function on Ox that  we identify with a function on f~ 
depending only on f2x, 

% + , ( r ' a )  = % ( a ) ,  

where 11"" II is the sup norm.  
For  example,  in the usual Ising 

I1%11 < (2) 
OeX 

model  with ferromagnet ic  nearest  
ne ighbor  (n.n.) interactions, f2 o = { -  1, + 1}, Vo gives weight 1/2 to - 1 and 
+ 1, and 

qgx(ax) = -Ja~aj for X = {i, j} n.n. sites 

= 0 otherwise (3) 

For  a configurat ion a ' ~  f2, one defines the Hamihonian in the finite 
region A C 2~ a under  the boundary condition (b.c.) corresponding to specifying 
the spins outside A, ax' (A = 7/a\A), as 

X n A  r 

and the corresponding Gibbs measure in A at reciprocal temperature/3 is then 

/xa,o,(daa) = Z2.,~, exp(-~3HA,o,) vA(d%) 
(4) t "  

Za,o. = [ exp(-/3Ha,~,)va(daa) 
& 

A Gibbs state for  d9 is a measure  p on f~ such tha t  for  any finite A C 7]a 
the restriction pa of  p to f2A satisfies 

= f ~A.,, px(dax') (5) pa 
Ja 

Fo r  i e 77 a, we define the translate of  p, T~p, by �9 

(T'p)(A) = p (T- 'A)  for  A C O (6) 

with T-~A defined by (1). 
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p is translation invariant if T~p = p, Vi G Z a. 
Before stating some properties of Gibbs states, we introduce generalized 

b.c. defined through the Hamiltonian: 

HA'~(cra) = x=AZ Cbx(ax) + x~=A bzA(~z) (7) 

where bx A is a continuous function on ~)x and for any finite A 

d X n A r  

ZA.b and t~a.0 are defined as in (4). One familiar example of generalized b.c. 
are the free b.c. corresponding to bx A = 0. Any b.c. defines a generalized b.c., 
due to (2), with 

bx = *x, (8) 
X ' n A  = X 

Let G| be the set of Gibbs states for q5 and G~ the set of extreme points 
of G| The following is known: 

(i) For  any generalized b.c. b and any sequence An S Za such that 
lira,+ ~/~a,,b = ? exists (in the weak* sense), p G G~.(2~ 

(ii) Moreover, for any p ~ Gr and any sequence An/~ 77~, limn~ ~ tza,,o 
C~ p a.e. (~ 

(iii) Let BA, A C ya, be the a-algebra generated by the cylinder sets 
based on s and Boo = (-'IA Bx, where the intersection runs over the finite 
subsets of  2U. Then p e G'~ if and only if p(A) = 0 or 1 for all A G B~ .(:.2~ 

(iv) For any p G Gr there exists a unique probability measure t'D, 
concentrated on Gr such that (:'2'4'5> 

p = f o~(d~o) (9) 

(v) Two Gibbs states p and p' are equivalent (mutually absolutely con- 
tinuous) if and only i f /~  and/~o" are equivalent. This can be seen from the 
construction of ~p in Refs. 4 and 5. 

2. THE  RESULTS 

Def ini t ion.  Two generalized b.c. b and b' have afinite energy difference 
if  

Cb,b, = sup sup ~ (bxA(ax) - b'xA(ax))[< oo (10) 

I 

A ~"- X = A  I 

For b.c. coming from configurations a and a' this means 

sup sup ~ [a)x(~x, ax) - CPx(~x, ax')] < oo (l l) 
~e~A xc~X r 

X n A  @ 
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Theorem. Given two generalized b.c. b and b' having a finite energy 
difference and a sequence A, 7 7/a such that 

lim/xA,,~ = p, lim /zA,,b, = t~' 

then O and p' are equivalent and so are t~, and t~o, in (9). In particular, if p is 
extremal, p = / .  

Proof. Let EA, be a cylinder based on ~)A,, A' finite. We claim that, for 
any A D A', 

[exp(-2fiCo,b,)]lXa, o(EA,) <~ tZA,b,(EA,) <~ [exp(2fiCb,~,)]tzA,b(E^,) (12) 

The theorem follows then by letting A = A~, n -+ o% and using the fact that 
the monotone class, to which (12) extends immediately, generated by the 
cylinders is equal to the e-algebra generated by them. To prove (12), we simply 
note that 

ZA,b = f exp[-- fi(HA,b(aA) -- HA,b,(aA))] exp[-- flHA,b,(a•)] vA(daA) 

Za,b' f exp [ -- fiHA,b,(aA)] va(d%) 
~< exp(flCo,0,) 

by (10). The same inequality is true when the integrals in the numerator and 
the denominator are restricted to EA,, which finishes the proof. 1 

Coro l l a ry  1. (See also Ref. 2, Chapter 5.) Let d = 1 and qb be such that 

(diam X) 
~ I1%11 lXl < oo (13) 
0 E X  

then there is only one Gibbs state for qb. 

Proof. It is enough to show that any two b.c. have a finite energy 
difference, because then, by the theorem, all extremal Gibbs states (and 
therefore all possible Gibbs states) have to coincide. 

To check (11), we note that Va, or' E ~2 

XnXr 

< 2  ~ 11%11 
X :  

X n A r  
XuX~ 

= 2 ~ ~ ( # { i e 7 i l ( X +  i) c~A:/:  ~ , ( X +  i) c~A_ r ~}) 
X:O~X 

Since d = 1, 

#{i e ~ l (X + i) c~ A ~ ~ ,  (X  + i) c~ A ~ ~} 
~< 2 diam(X), independent of A �9 
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The next corollary deals with (the absence of) non-translation-invariant 
Gibbs states in two dimensions. We take a particular sequence of regions 
BL.M = {i = (il, i2) ~ 22[ [ill <~ M, [i2[ ~< L} and we let first M--> oo and 
then L --> oo. Since the first limit is in fact one-dimensional, the resulting state 
for fixed L in a band BL = {i ~ 2v21 li2[ ~< L} depends only on the b.c. on the 
sides of the band (this can be shown in the same way as for Corollary 1). 
It is known (6-8) in the two-dimensional, ferromagnetic, nearest neighbor Ising 
model [see (3)], that if we let ~h = + 1 for all i outside BL with il /> 0 and 
~r~ = - 1 for il < 0, we have in the limit L --> oo a translation-invariant Gibbs 
state. We prove here a weaker result, which is valid, however, for more general 
systems, interactions, and b.c. For  ~r E f2 we denote by tz~L.~ the unique Gibbs 
state in the band BL with ~ as b.c. Let d2(X) = max{dist(i2,ju)li, j ~ X} and 

Dh z = {i~BL[ [i~l ~< h}. 

C o r o l l a r y  2. Let cP satisfy 

I IOxl[d~(x)  < oo 
O~X 

Then, for any al, ~2 ~ ~o and any a ~ ~ such that, for some h /> O, 

g~ = J1, il ~> h 

a i = ~r%, is ~ < - h  

and any sequence (L.), L~ -+ o% such that l im.~ /%L. ,o  = p, then p and Tqp 
are mutually absolutely continuous. If  p is extremal, then it is translation 
invariant in the i~ direction. 

ProoL As in the preceding proof, we have to check (11) for cr and a', 
where or' is obtained by translating cr by one step in the i~ direction [by 
definition (6),/zB~.,~.-+ Tqp]. With these definitions of ~r and a', we have, for 

any rectangle BL,M, 

x~_~: :  [qbx(~A, aX)-- qbx(~A, crX')] I 

X~BL, M ~& 
XnD~ # 

= 2 ~ ~ ( / / { i e - Y 2 J ( X  + i) t% BL, M # 2J and (X + i) n Dz h r Z}) 
0 e X  

and it is easily checked that this last number is bounded by 2(2h + 1)[ X[d2(X) 
uniformly in M and L. �9 
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We consider now general ferromagnetic lsing spins and we show below 
that, in any dimension, some b.c. always lead to translation-invariant Gibbs 
states. Thus f~0 = { - 1 ,  1}, , o ( - 1 )  = Vo(+ 1) = 1/2, and 

*x  = -Jx~--[ c~,, Jx >>- 0 (14) 
i e X  

The following is known about different b.c. : 
Free b.c.: bxA= 0 in (7). Then limaz~d/XA.free = P0 exists and is 

translation invariant. <9~ 
Plus (resp. minus b.c.): All ~ = +1 (resp. - 1 )  for i ~ A .  Then 

limAs~t~A.+ = p+ (limAz~ a gA,- = P-) exist and define translation- 
invariant Gibbs states, which are, moreover, extremal. <1~ 

Remark. Corollary 2 really says that if two b.c. coincide outside a 
" s t r ip"  (i.e. the set of sites between two parallel lines in R 2) and the inter- 
actions are suitable in that strip, then these two b.c. lead to equivalent Gibbs 
states. Another simple but somewhat trivial application of this remark is the 
following: take a ferromagnetic system in two dimensions of the form (14) 
but with Jx # 0 only if J{ is the set of sites of an elementary square of the 
lattice, Then the symmetry group of this system ~11) contains the flipping of 
all spins along any vertical or horizontal line of the lattice. Since the plus b.c. 
leads to an extremal Gibbs states O + ,<1o~ our observation shows that any b.c. 
obtained from the plus b.c. by flipping a finite number of lines coincide with 
o +. But since this flipping is in fact a symmetry of the system, one concludes 
by a limiting argument that p+ = p_. One may easily construct similar 
examples. Actually this kind of model was studied in Ref. 12 under the name 
"trivial systems" and it is shown using the reduction procedure that they 
have a unique translation-invariant Gibbs state (and in fact a unique Gibbs 
state). 

Now we shall restrict ourselves to the case where the set obtained from 
E = {XIJ(X)  > 0} by the operation of symmetric difference applied to the 
elements of E contains all the even subsets of 7/a. Then, the "symmetry 
group ''(~z) of the system is reduced to two elements, the identity and the 
flipping of all spins. 

For all/3, except possibly for a countable set, (~a~ and certainly for all/7 
sufficiently large, ~~ the state po has the decomposition corresponding to 
(9): 

po = �89 + O-) (15) 

Corollary 3, For any generalized b.c. such that 

sup sup ~, bxA(Crx)[< oo (16) 
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and any sequence An ~ 7/a such tha t  l im ,~ /~A, .b  = O, P is t ranslat ion 
invariant,  whenever  (15) holds. 

Proof. This follows immediate ly  f rom the theorem because any  b.c. 
satisfying (16) and the free b.c. have a finite energy difference. So/x~ in (9) 
has to be absolutely cont inuous with respect to tZDo, which by (15) is con- 
centrated on p+ and p_ .  �9 

[The interest o f  this corol lary m a y  be underl ined by compar ing  it with point  
(i) in the discussion below.] 

The  last corol lary concerns the semiinfinite, two-dimensional  Ising model  
with nearest  ne ighbor  interaction.  This is a model  as in (3) but  where our  
lattice 77 2 is replaced by ~ = {i = (iz, i2) e 712]i z > 0}. We put  some b.c. on 
the line il = 0 and ask whether  for  a given b.c. there is a unique Gibbs  state 
for  the system in [1_. This is known (7'8~ when a, = + 1 (or - 1) for  all i with 
iz = 0 (and is false for  the free b.c. below the critical tempera ture  found by 
Onsager).  Here  we extend this result to other  b.c. 

Corollary 4. In the above model,  for  any b.c. on the line iz = 0 with 
a, = + 1 (or - I) for  li21 > N for  some N, there is only one Gibbs  state. 

Proof. Take  a sequence o f  regions in [k, Ac.~z = {i ~Lli~ <~ M, [i21 <~ L}. 
I f  there is more  than one Gibbs  state for  our system, then we can find [point 
(iii) in the In t roduct ion]  two configurations ~ and ~' such that  

l im t~AL.M,~ = P, lira #za~,~.o. = p' 
L , M  ~ oo L , M  ~ 

are two different extremal,  i.e., nonequivalent  Gibbs  states [point (v) in the 
Introduct ion] .  But each of  these b.c. will have a finite energy difference with 
the same b.c. for the system with a, = + l, i~ = 0 (because we only put  a 
finite number  of  - 1 on the line i~ = 0 in our system). Since there is a unique 
Gibbs  state for  the system a~ = + 1 on i~ = 0, p and p' have to be equivalent 
to it and therefore equivalent a m o n g  themselves, which contradicts  the fact 
tha t  they are different extremal  Gibbs  states. �9 

3. D I S C U S S I O N  

(i) We m a y  ask whether  the stability of  extremal Gibbs  states, expressed 
by the fact that,  if  a b.c. b yields an extremal  p, then all b.c. b'  differing f rom 
b by a finite energy also yield p, holds also for nonext remal  Gibbs  states. 
The  answer is no. We can give several examples of  nonext remal  Gibbs  states 
where it does not  hold:  if  we take a fer romagnet ic  Ising model  with nearest  
ne ighbor  interactions and  free bounda ry  conditions, we know that  it leads 
to a nonext remal  Gibbs  state for  sufficiently large/7.  (l~ (Presumably all /3 
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above the critical t3.) I f  we take A n S ~a and fix one spin adjacent to A~, 
as, = + 1, and otherwise free b.c., i.e., bx A in (7) isJ ,  s a, for X = {i), we get a 
state with a strictly positive expectation value p(a0) > 0 for fi sufficiently 
large. Obviously for the free b.c., po(~0) = 0, by symmetry. So changing only 
one spin on the boundary changes the Gibbs state. One proves that p(ao) > 0 
with a Peierls argument in the form used in Ref. 14. I f  a0 # 1, there must be a 
contour (i.e., a connected set of  bonds ( i j )  with ~, = as) that is crossing the 
line joining ao and as, and such that 0 and j ,  are separated by that contour. 
Since the probability of  a contour containing k elements is less than e -w~, 
the number of such contours containing a given element is bounded by 3 ~ and 
the cardinality of  a contour separating 0 andjn and crossing the line between 
0 andj~ at a distance h from 0 a n d j ,  has to be larger than 2h, we can conclude 
the argument as usual to obtain (ao)A,.~j~ = + 1 >/ 3 > 0 for fl sufficiently 

large. In the two-dimensional model we expect the preceding result to hold 
in fact up to the critical temperature, because of the equivalence between the 
short- and the long-range order in that model. ~15~ 

Since the free b.c. is not a true b.c., i.e., does not correspond to a 
configuration outside A, we may ask for an example with a true b.c. A simple 
answer comes from spin-1 systems, i.e., the spin takes the values - 1, 0, + 1. 
Then free b.c. are just the b.c. with a s = 0, Vj ~ ~_, and the same Peierls 
argument works. 

The interesting open question is whether the above stability completely 
characterizes extremal Gibbs states, i.e., does the requirement that p be 
obtainable from b.c. (true for extremal states) and be stable imply that p is 
extremal ? 

(ii) Our theorem applied to the above example tells us that po and p 
are equivalent, so po ~ p implies that neither state is extremal. Interestingly 
enough, one can use a Peierls argument to show that in three dimensions the 
b.c. a s --- + 1, j l  = 0, and free otherwise leads to the same (extremal) state 
as ~j = + 1 everywhere (state p+) at low temperatures. First of  all, this state 
p is translation invariant because by correlation inequalities 

and this is enough by the results of  Ref. 13 and the fact that at low tempera- 
tures there are only two extremal translation-invariant Gibbs states. ~~ In 
these Gibbs states p+ (resp. p_) a Peierls argument shows that the set of  
configurations with an infinite cluster of  minus spins (resp. plus spins) has 
measure zero. So, we have only to show that in p the probability that ~o 
belongs to an infinite cluster of  - 1 spins is zero. By translation invariance, 
this holds for any other point and a countable union of sets of  measure zero 
is of  measure zero. We use a slightly modified Peierls argument. 

Suppose ~o = - 1 ; then, due to the b.c., we can draw in the plane i~ = 0 
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the smallest closed contour surrounding the origin. Now we consider the 
smallest connected contour S (in the same sense as above but on 2 3) con- 
taining that contour in the plane. This new contour S may be open or closed. 
We define its interior as the set of points that can be connected to 0 through 
n.n. bonds that never intersect S and we estimate the probability of  S by 
flipping all the spins in the interior of  S. Therefore, this probability is 
bounded by e -BIsf, ]S] is the number of  n.n. bonds in S. But the number of  
contours with IS] = n containing 0 in their interior is bounded by 3"n 2. 
So for/? > log 3 the probability that 0 is in the interior of  an open contour, 
i.e., infinite contour, or, in other terms, belongs to an infinite cluster of  - 1 
spins, is zero. 

The following question is open: does this state coincide with p+ at all 
temperatures ? Or does it cease to be so at some temperature below the critical 
one ? I f  this is the case, has that temperature anything to do with the presumed 
roughening temperature of  this modeV 16) or the presumed percolation 
temperature (17) ? 

(iii) We have restricted our discussion to bounded (i.e., compact flo) spin 
systems on a lattice and without hard cores. It  is, however, possible to extend 
the theorem and its corollaries to continuous systems in [~a, to some un- 
bounded spins, and to some kind of hard core, keeping in mind the fact that 
we use only the boundedness of  the ratio of  the probability of  certain events 
for the two boundary conditions. For systems with hard cores this would 
mean the following: two b.c. b and b' outside A define different admissible 
phase spaces g2A(b) and f~A(b') in f~A. Now,  we would require that there exists 
for each A a A' C A such that the restrictions to f~A, of  f~A(b) and f~A(b') 
coincide and that 

sup sup [HA\A'(gA\A')/ < O0 
A 0"A\ A, 

With this remark, one may extend Corollaries 1 and 2 to systems with hard 
cores. For  example, in Ref. 2 one considers ~o finite and the hard core is 
given by a matrix t, indexed by :2 o • 1)0, with ta:, = 0 or 1 (a, ~ 'G ~o), 
indicating whether nearest neighbor configurations are allowed or not. I f  
there is an a such that t ~ has all its entries strictly positive, then the system is 
called mixing. This means that the hard core is of  finite range. Then, for 
d = 1 one may take as A' the set of  points whose distance from A is larger 
than a. And, provided that the interaction satisfies (13), one proves that there 
is a unique Gibbs state for this system (as in Ref. 2) in the same way as 
Corollary 1. The same ideas extend to Corollary 2. One shows, e.g., that in 
both the continuum (:s) and lattice (19) Widom-Rowlinson model the A-B 
b.c. (2~ do not lead to an extremal nontranslation-invariant Gibbs state in two 
dimensions. 
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