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On the Equivalence of Boundary Conditions
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We show that if 4 and b’ are two boundary conditions (b.c.) for general
spin systems on Z¢ such that the difference in the energies of a spin con-
figuration o, in A < Z¢ is uniformly bounded, |Hy (cs) — Hap(o4)| <
C < oo, then any infinite-volume Gibbs states p and p’ obtained with these
b.c. have the same measure-zero sets. This implies that the decompositions
of p and p’ into extremal Gibbs states are equivalent (mutually absohutely
continuous). In particular, if p is extremal, p = p’. Application of this
observation yields in an easy way (among other things) (a) the uniqueness
of the Gibbs states for one-dimensional systems with forces that are not
too long-range; (b) the fact that various b.c. that are natural candidates for
producing non-translation-invariant Gibbs states cannot lead to such an
extremal Gibbs state in two dimensions.
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1. INTRODUCTION

The outline of this paper is as follows. We first recall briefly the definition
and some known properties of Gibbs states for lattice systems. We then prove
(by a simple observation) our main theorem and give various applications as
corollaries. This is followed by some remarks about ““stability” criteria for
extremal Gibbs states and a sketch of a proof for extending our results to
more general systems, e.g., lattice models with hard cores.

Gibbs States

We consider the general formalism of Gibbs states for spin systems with
a compact metric space as phase space. We recall here the basic definitions
and properties of Gibbs states. For more details, see Refs, 1 and 2.
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Foreachi = (iy,..., i) € Z¢% we have a copy (£2;, »,) of a compact metric
space Q, and a probability measure v, on £,.

For A < 7¢,
QA:I__[Q“ VA=HVi
ieA ieA
Q = Q,a is equipped with the o-algebra generated by the cylinder sets.
For o e Q, o, € Q, is the restriction of o to Q,.
The group Z¢ acts on Q as

(Tio); = oy, ceQ €))

An interaction @ is a family (®y) indexed by the finite subsets of Z¢ such
that @ is a continuous function on Qy that we identify with a function on Q
depending only on Qy,

Ox,(T0) = Dx(0), > [Dx] < o0 ©)
0eX

where |---| is the sup norm.

For example, in the usual Ising model with ferromagnetic nearest
neighbor (n.n.) interactions, Q, = {—1, +1}, v, gives weight 1/2 to —1 and
+1, and

Dx(oy) = —Joy0, for X = {i, j} n.n. sites 3)

=0 otherwise

For a configuration ¢’ € Q, one defines the Hamiltonian in the finite
region A C Z%under the boundary condition (b.c.) corresponding to specifying
the spins outside A, o3’ (A = Z%\A), as

HA,G’(U)Z Z (DX(UA,Uﬁ)

XNnA+ g

and the corresponding Gibbs measure in A at reciprocal temperature 8 is then

pa,o(don) = Z5 % exp(—BHa, ) va(don)
©)
Zy, = f exp(—BHy o) va(don)

A Gibbs state for @ is a measure p on Q such that for any finite A C Z¢
the restriction p, of p to €, satisfies

pa = f ta,o Pr(doz’) &)
o
For i € 74, we define the translate of p, T?p, by -
(T'o)(A) = p(T-34) for AC Q )

with T-*4 defined by (1).
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p is translation invariant if Tip = p, Vie Z°,
Before stating some properties of Gibbs states, we introduce generalized
b.c. defined through the Hamiltonian:

Hy (on) = z Ox(ox) + Z bx*(ox) )
XcA XcA
where by” is a continuous function on Qy and for any finite A

S

XNA#+ o

lim =0

A 78

Z,, and p, , are defined as in (4). One familiar example of generalized b.c.
are the free b.c. corresponding to bx* = 0. Any b.c. defines a generalized b.c.,
due to (2), with

bt = > Oy )
X'NA#2
X'0A=X

Let G, be the set of Gibbs states for @ and G, the set of extreme points
of G4. The following is known:

(i) For any generalized b.c. b and any sequence A, » Z¢ such that
lim, . pa,» = p exists (in the weak™* sense), p € Go.*?

(ii) Moreover, for any p € G, and any sequence A, 7 7% lim,_, » ps, , €
G, pae®

(ili) Let B,, A C Z% be the o-algebra generated by the cylinder sets
based on Q, and B, = (Na Bz, where the intersection runs over the finite
subsets of Z¢. Then p € G, if and only if p(4) = 0 or 1 for all 4 € B, %+

(iv) For any pe Gy, there exists a unique probability measure w,,
concentrated on G, such that®:2:49

p = [ (e ©

(v) Two Gibbs states p and p’ are equivalent (mutually absolutely con-
tinuous) if and only if x, and p,. are equivalent. This can be seen from the
construction of u, in Refs. 4 and 5.

2. THE RESULTS
Definition. Two generalized b.c. » and 4" have a finite energy difference
if

Cy,p» = SUp sup
A Qp

2, (bx™(ox) — bP(ox))

X<cA

< (10)
For b.c. coming from configurations ¢ and o' this means

Z [Px(5x, 0x) — Px(5%, 0x')]

XOA+0
XnA+ o

sup sup
A Gen A

< © (an
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Theorem. Given two generalized b.c. b and &’ having a finite energy
difference and a sequence A, ~ Z¢ such that

7}‘_{2 Bagb = P 7}1_{'2 Bapor = P’
then p and p’ are equivalent and so are p, and p, in (9). In particular, if p is
extremal, p = p’.
Proof. Let E,. be a cylinder based on Q,., A’ finite. We claim that, for
any AD A/,
[exp(—2B8C,,p)lpao(Es) < pap(Er) < [exp(2BCy ) lua o(Ex)  (12)
The theorem follows then by letting A = A,, n — 0, and using the fact that
the monotone class, to which (12) extends immediately, generated by the

cylinders is equal to the o-algebra generated by them. To prove (12), we simply
note that

Zry _ J. exp[—B(Ha,b(04) — Hp 5(094))] €xp]—BH} 5 (04)] va(das)

Zyy f exp[—BHy v(o4)] va(doy)
< exp(BCo,p)

by (10). The same inequality is true when the integrals in the numerator and
the denominator are restricted to E,., which finishes the proof. i}

Corollary 1. (See also Ref. 2, Chapter 5.) Let d = 1 and @ be such that

S oy @ERE) o (13)

QeX IXW

then there is only one Gibbs state for .

Proof. It is enough to show that any two b.c. have a finite energy
difference, because then, by the theorem, all extremal Gibbs states (and
therefore all possible Gibbs states) have to coincide.

To check (11), we note that Ve, ¢’ € Q2

|©x(64, 05) — Px(84a, 07")|

XaA#g
XNA+ 2

<2 XZ [ Px]

X0l0* o
XUuA+ @

=2mzexlﬁz_}{[”(#{ieli()(+i)ﬁA;éz,(XJri)nK;ég})

Since d = 1,
HMieZI X+ DN A#o, (X +i)NA# g}
< 2 diam(X), independent of A
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The next corollary deals with (the absence of) non-translation-invariant
Gibbs states in two dimensions. We take a particular sequence of regions
By =1{i=(@,i)eZ? ||l € M, |is] <L} and we let first M — oo and
then L — 0. Since the first limit is in fact one-dimensional, the resulting state
for fixed L in a band B, = {i € 72| |i,| € L} depends only on the b.c. on the
sides of the band (this can be shown in the same way as for Corollary 1).
It is known®-® in the two-dimensional, ferromagnetic, nearest neighbor Ising
model [see (3)], that if we let o, = +1 for all / outside B, with i; > 0 and
a; = —1 for i; < 0, we have in the limit L — co a translation-invariant Gibbs
state. We prove here a weaker result, which is valid, however, for more general
systems, interactions, and b.c. For o € Q we denote by .y, , the unique Gibbs
state in the band B, with og; as b.c. Let dy(X) = max{dist(i,, j5)|i, j€ X} and
D)t ={ieB||i| <h

Corollary 2. Let @ satisfy

> 1®xldo(X) < 0

OeXx

Then, for any 7,, &, € 0 and any ¢ € Q such that, for some 2 > 0

\Y

h

o; = 61, I
0y = GO, i < —h

and any sequence (L,), L, — oo, such that lim, _, ., 5,0 = p, then pand Thp
are mutually absolutely continuous. If p is extremal, then it is translation
invariant in the i; direction.

Proof. As in the preceding proof, we have to check (11) for ¢ and o,
where o is obtained by translating ¢ by one step in the i; direction [by
definition (6), pp, o, — Tp]. With these definitions of o and ¢’, we have, for
any rectangle B, y,

[®x(64, 05) — Px(G4, 07)]
XNBL M #*9
XNEL,M k]

<2 3> %]
XOBL m#2
XADf#o

23 ”lXXi” (i cZ?|(X + )N By # @ and (X + 1) N D # 2)

and it is easily checked that this last number is bounded by 2(24 + 1)| X [dz(X )
uniformly in M and L. |
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We consider now general ferromagnetic Ising spins and we show below
that, in any dimension, some b.c. always lead to translation-invariant Gibbs
states. Thus Qg = {—1, 1}, vo(—1) = vo(+1) = 1/2, and

‘ Oy =—Jx[ o, Jx=0 (14)
ieX

The following is known about different b.c.:

Free b.c.: by = 0 in (7). Then lim, , ¢ s rree = po €Xists and is
translation invariant.®

Plys (resp. minus b.c): All o, = +1 (resp. —1) for ie A. Then
limy ,z¢ pa,+ = py  (limy .z s, - = p_) exist and define translation-
invariant Gibbs states, which are, moreover, extremal.*®

Remark. Corollary 2 really says that if two b.c. coincide outside a
“strip”” (i.e. the set of sites between two parallel lines in R?) and the inter-
actions are suitable in that strip, then these two b.c. lead to equivalent Gibbs
states. Another simple but somewhat trivial application of this remark is the
following: take a ferromagnetic system in two dimensions of the form (14)
but with Jx # 0 only if X is the set of sites of an elementary square of the
lattice. Then the symmetry group of this system®? contains the flipping of
all spins along any vertical or horizontal line of the lattice. Since the plus b.c.
leads to an extremal Gibbs states p, ,*® our observation shows that any b.c.
obtained from the plus b.c. by flipping a finite number of lines coincide with
e+ . But since this flipping is in fact a symmetry of the system, one concludes
by a limiting argument that p, = p_. One may easily construct similar
examples. Actually this kind of model was studied in Ref. 12 under the name
“trivial systems” and it is shown using the reduction procedure that they
have a unique translation-invariant Gibbs state (and in fact a unique Gibbs
state).

Now we shall restrict ourselves to the case where the set obtained from
E = {X|J(X) > 0} by the operation of symmetric difference applied to the
elements of E contains all the even subsets of Z% Then, the “symmetry
group” ¥ of the system is reduced to two elements, the identity and the
flipping of all spins. '

For all B, except possibly for a countable set,*® and certainly for all 5
sufficiently large,*%11 the state p, has the decomposition corresponding to

:
po=Hp+ + p-) (15)
Corollary 3. For any generalized b.c. such that

> bXA(ch)l < ® (16)

sup sup
A X<A

TAEQA
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and any sequence A, —>Z? such that lim,., pa,, = p, p is translation
invariant, whenever (15) holds.

Proof. This follows immediately from the theorem because any b.c.
satisfying (16) and the free b.c. have a finite energy difference. So u, in (9)
has to be absolutely continuous with respect to w, , which by (15) is con-
centrated on p, and p_.

[The interest of this corollary may be underlined by comparing it with point
(i) in the discussion below.]

The last corollary concerns the semiinfinite, two-dimensional Ising model
with nearest neighbor interaction. This is a model as in (3) but where our
lattice Z2 is replaced by L = {i = (i, i3) € Z2[i; > 0}. We put some b.c. on
the line i; = 0 and ask whether for a given b.c. there is a unique Gibbs state
for the system in L. This is known"® when ¢, = +1 (or —1) for all { with
iy = 0 (and is false for the free b.c. below the critical temperature found by
Onsager). Here we extend this result to other b.c.

Corollary 4. In the above model, for any b.c. on the line /; = 0 with
o, = +1 (or —1) for |iy] > N for some N, there is only one Gibbs state.

Proof. Take a sequence of regionsin L, Ay, = {feLli; < M, |iy| < L}.
If there is more than one Gibbs state for our system, then we can find [point
(iii) in the Introduction] two configurations ¢ and ¢’ such that

L,%\ifllm O N e

are two different extremal, i.e., nonequivalent Gibbs states [point (v) in the
Introduction]. But each of these b.c. will have a finite energy difference with
the same b.c. for the system with o; = +1, i; = 0 (because we only put a
finite number of —1 on the line /; = 0 in our system). Since there is a unique
Gibbs state for the system o; = +1 on i, = 0, p and p’ have to be equivalent
to it and therefore equivalent among themselves, which contradicts the fact
that they are different extremal Gibbs states. I

3. DISCUSSION

(i) We may ask whether the stability of extremal Gibbs states, expressed
by the fact that, if a b.c. b yields an extremal p, then all b.c. b’ differing from
b by a finite energy also yield p, holds also for nonextremal Gibbs states.
The answer is no. We can give several examples of nonextremal Gibbs states
where it does not hold: if we take a ferromagnetic Ising model with nearest
neighbor interactions and free boundary conditions, we know that it leads
to a nonextremal Gibbs state for sufficiently large 8.9 (Presumably all B
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above the critical 8.) If we take A, » Z¢ and fix one spin adjacent to A,,
o;, = +1, and otherwise free b.c., i.e., by* in (7) is J;; o; for X = {i}, we geta
state with a strictly positive expectation value p(oy) > 0 for B sufficiently
large. Obviously for the free b.c., po(oy) = 0, by symmetry. So changing only
one spin on the boundary changes the Gibbs state. One proves that p(c,) > 0
with a Peierls argument in the form used in Ref. 14. If o, # 1, there must be a
contour (i.e., a connected set of bonds {ij> with ¢; = ¢,) that is crossing the
line joining o, and ¢; and such that 0 and j, are separated by that contour.
Since the probability of a contour containing & elements is less than e~#7%,
the number of such contours containing a given element is bounded by 3* and
the cardinality of a contour separating 0 and j, and crossing the line between
0 and j, at a distance 4 from 0 and j, has to be larger than 2k, we can conclude
the argument as usual to obtain {og)s,,, = +1 > & > 0 for 8 sufficiently
large. In the two-dimensional model we expect the preceding result to hold
in fact up to the critical temperature, because of the equivalence between the
short- and the long-range order in that model.®

Since the free b.c. is not a true b.c., i.e., does not correspond to a
configuration outside A, we may ask for an example with a true b.c. A simple
answer comes from spin-1 systems, i.e., the spin takes the values —1, 0, +1.
Then free b.c. are just the b.c. with o, = 0, Yj€ A, and the same Peierls
argument works.

The interesting open question is whether the above stability completely
characterizes extremal Gibbs states, i.e., does the requirement that p be
obtainable from b.c. (true for extremal states) and be stable imply that p is
extremal ?

(ii) Our theorem applied to the above example tells us that p, and p
are equivalent, so p, # p implies that neither state is extremal. Interestingly
enough, one can use a Peierls argument to show that in three dimensions the
b.c. o, = +1, j; = 0, and free otherwise leads to the same (extremal) state
as o; = + 1 everywhere (state p.) at low temperatures. First of all, this state
p 1s translation invariant because by correlation inequalities

o008, 2 {0 DA treob.c.

and this is enough by the results of Ref. 13 and the fact that at low tempera-
tures there are only two extremal translation-invariant Gibbs states.®® In
these Gibbs states p, (resp. p_) a Peierls argument shows that the set of
configurations with an infinite cluster of minus spins (resp. plus spins) has
measure zero. So, we have only to show that in p the probability that o
belongs to an infinite cluster of —1 spins is zero. By translation invariance,
this holds for any other point and a countable union of sets of measure zero
is of measure zero. We use a slightly modified Peierls argument.

Suppose o, = — 1; then, due to the b.c., we can draw in the plane i; = 0
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the smallest closed contour surrounding the origin. Now we consider the
smallest connected contour S (in the same sense as above but on Z%) con-
taining that contour in the plane. This new contour S may be open or closed.
We define its interior as the set of points that can be connected to 0 through
n.n. bonds that never intersect .S and we estimate the probability of § by
flipping all the spins in the interior of S. Therefore, this probability is
bounded by e~#51, |S| is the number of n.n. bonds in S. But the number of
contours with |S| = n containing 0 in their interior is bounded by 32
So for 8 > log 3 the probability that O is in the interior of an open contour,
i.e., infinite contour, or, in other terms, belongs to an infinite cluster of —1
spins, is zero.

The following question is open: does this state coincide with p* at all
temperatures ? Or does it cease to be so at some temperature below the critical
one ? If this is the case, has that temperature anything to do with the presumed
roughening temperature of this model“® or the presumed percolation
temperature*”?

(iif) We have restricted our discussion to bounded (i.e., compact Q,) spin
systems on a lattice and without hard cores. It is, however, possible to extend
the theorem and its corollaries to continuous systems in R?% to some un-
bounded spins, and to some kind of hard core, keeping in mind the fact that
we use only the boundedness of the ratio of the probability of certain events
for the two boundary conditions. For systems with hard cores this would
mean the following: two b.c. b and &’ outside A define different admissible
phase spaces (,(b) and Q,(6") in Q,. Now, we would require that there exists
for each A a A" C A such that the restrictions to Q. of Q,(b) and Q,(%")
coincide and that

sup sup IHA\A’(GA\A’)l <
A Opa

With this remark, one may extend Corollaries 1 and 2 to systems with hard
cores. For example, in Ref. 2 one considers ), finite and the hard core is
given by a matrix 7, indexed by Q, x Q,, with #,, =0 or 1 (o, ¢’ € Q),
indicating whether nearest neighbor configurations are allowed or not. If
there is an ¢ such that #* has all its entries strictly positive, then the system is
called mixing. This means that the hard core is of finite range. Then, for
d = 1 one may take as A’ the set of points whose distance from A is larger
than a. And, provided that the interaction satisfies (13), one proves that there
is a unique Gibbs state for this system (as in Ref. 2) in the same way as
Corollary 1. The same ideas extend to Corollary 2. One shows, e.g., that in
both the continuum®® and lattice’® Widom-Rowlinson model the A-B
b.c.%9 do not lead to an extremal nontranslation-invariant Gibbs state in two
dimensions.
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